skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hajłasz, Piotr"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We show a new, elementary and geometric proof of the classical Alexandrov theorem about the second order differentiability of convex functions. We also show new proofs of recent results about Lusin approximation of convex functions and convex bodies by C 1 , 1 C^{1,1} convex functions and convex bodies. 
    more » « less
  2. We present an elementary proof of a well-known theorem of Cheeger which states that if a metric-measure space \(X\) supports a \(p\)-Poincaré inequality, then the \(N^{1,p}(X)\) Sobolev space is reflexive and separable whenever \(p\in (1,\infty)\). We also prove separability of the space when \(p=1\). Our proof is based on a straightforward construction of an equivalent norm on \(N^{1,p}(X)\), \(p\in [1,\infty)\), that is uniformly convex when \(p\in (1,\infty)\). Finally, we explicitly construct a functional that is pointwise comparable to the minimal \(p\)-weak upper gradient, when \(p\in (1,\infty)\). 
    more » « less